I’m Marco, an AI researcher and inventor based in London. I’m the founder and Lead of LSE.AI, where we investigate the mechanistic interpetability of transformer machine learning models.
Determining company similarity is a vital task in finance, underpinning hedging, risk management, portfolio diversification, and more. Practitioners often rely on sector and industry classifications to gauge similarity, such as SIC-codes and GICS-codes - the former being used by the U.S. Securities and Exchange Commission (SEC), and the latter widely used by the investment community. Since these classifications can lack granularity and often need to be updated, using clusters of embeddings of company descriptions has been proposed as a potential alternative, but the lack of interpretability in token embeddings poses a significant barrier to adoption in high-stakes contexts. Sparse Autoencoders (SAEs) have shown promise in enhancing the interpretability of Large Language Models (LLMs) by decomposing LLM activations into interpretable features. We apply SAEs to company descriptions, obtaining meaningful clusters of equities in the process. We benchmark SAE features against SIC-codes, Major Group codes, and Embeddings. Our results demonstrate that SAE features not only replicate but often surpass sector classifications and embeddings in capturing fundamental company characteristics. This is evidenced by their superior performance in correlating monthly returns - a proxy for similarity - and generating higher Sharpe ratio co-integration strategies, which underscores deeper fundamental similarities among companies.
Sparse Autoencoders (SAEs) have recently been employed as an unsupervised approach for understanding the inner workings of Large Language Models (LLMs). They reconstruct the model’s activations with a sparse linear combination of interpretable features. However, training SAEs is computationally intensive, especially as models grow in size and complexity. To address this challenge, we propose a novel training strategy that reduces the number of trained SAEs from one per layer to one for a given group of contiguous layers. Our experimental results on Pythia 160M highlight a 6x speedup without compromising the reconstruction quality and performance on downstream tasks. Therefore, layer clustering presents an efficient approach to train SAEs in modern LLMs.
Sparse AutoEncoders (SAEs) have gained popularity as a tool for enhancing the interpretability of Large Language Models (LLMs). However, training SAEs can be computationally intensive, especially as model complexity grows. In this study, the potential of transfer learning to accelerate SAEs training is explored by capitalizing on the shared representations found across adjacent layers of LLMs. Our experimental results demonstrate that fine-tuning SAEs using pre-trained models from nearby layers not only maintains but often improves the quality of learned representations, while significantly accelerating convergence. These findings indicate that the strategic reuse of pretrained SAEs is a promising approach, particularly in settings where computational resources are constrained.